Sitio Web Personal de Gerardo Ramos Trujillo. 2005


 
     
 

BlueTooth

 
 
 
 

Principal

 
 

BlueTooth

 
 

Autobiografía

 
 

 
     

Visite:

 

JRebelde

 
 

ABCDatos

 
 

Aulafácil

 
 
 

Mis Correos:

 

Yahoo

 

Xasamail

 
 

Google

 
     
     
     
     

 


 

   

 

ed inalámbrica.        

      
      Piconets

      Si un equipo se encuentra dentro del radio de cobertura de otro, éstos pueden establecer conexión entre ellos. En principio sólo son necesarias un par de unidades con las mismas características de hardware para establecer un enlace. Dos o más unidades Bluetooth que comparten un mismo canal forman una piconet. Para regular el tráfico en el canal, una de las unidades participantes se convertirá en maestra, pero por definición, la unidad que establece la piconet asume éste papel y todos los demás serán esclavos. Los participantes podrían intercambiar los papeles si una unidad esclava quisiera asumir el papel de maestra. Sin embargo sólo puede haber un maestro en la piconet al mismo tiempo.

      Cada unidad de la piconet utiliza su identidad maestra y reloj nativo para seguir en el canal de salto. Cuando se establece la conexión, se añade un ajuste de reloj a la propia frecuencia de reloj nativa de la unidad esclava para poder sincronizarse con el reloj nativo del maestro. El reloj nativo mantiene siempre constante su frecuencia, sin embargo los ajustes producidos por las unidades esclavas para sincronizarse con el maestro, sólo son válidos mientras dura la conexión.

      Como ya hemos comentado, las unidades maestras controlan en tráfico del canal, por lo que estas tienen la capacidad para reservar slots en los enlaces SCO . Para los enlaces ACL , se utiliza un esquema de sondeo. A una esclava sólo se le permite enviar un slot a un maestro cuando ésta se ha dirigido por su dirección MAC (medio de control de acceso) en el procedimiento de slot maestro-esclavo. Éste tipo de slot implica un sondeo por parte del esclavo, por lo que, en un tráfico normal de paquetes, este es enviado a una urna del esclavo automáticamente. Si la información del esclavo no está disponible, el maestro puede utilizar un paquete de sondeo para sondear al esclavo explícitamente. Los paquetes de sondeo consisten únicamente en uno de acceso y otro de cabecera. Éste esquema de sondeo central elimina las colisiones entre las transmisiones de los esclavos.

      Estableciendo conexión.

      De un conjunto total de 79 (23) portadoras del salto, un subconjunto de 32(16) portadoras activas han sido definidas. El subconjunto, que es seleccionado pseudo-aleatóriamente, se define por una única identidad.

      Acerca de la secuencia de activación de las portadoras, se establece que, cada una de ellas visitará cada salto de portadora una sola vez, con una longitud de la secuencia de 32 (16) saltos. En cada uno de los 2.048 (1.028) saltos, las unidades que se encuentran en modo standby (en espera)  mueven sus saltos de portadora siguiendo la secuencia de las unidades activas. El reloj de la unidad activa siempre determina la secuencia de activación.

      Durante la recepción de los intervalos, en los últimos 18 slots o 11,25 ms, las unidades escuchan una simple portadora de salto de activación y correlacionan las señales entrantes con el código de acceso derivado de su propia identidad. Si los triggers son correlativos, esto es, si la mayoría de los bits recibidos coinciden con el código de acceso, la unidad se auto-activa e invoca un procedimiento de ajuste de conexión. Sin embargo si estas señales no coinciden, la unidad vuelve al estado de reposo hasta el siguiente evento activo.

      Para establecer la piconet, la unidad maestra debe conocer la identidad del resto de unidades que están en modo standby en su radio de cobertura. El maestro o aquella unidad que inicia la piconet transmite el código de acceso continuamente en periodos de 10 ms, que son recibidas por el resto de unidades que se encuentran en standby . El tren de 10 ms. de códigos de acceso de diferentes saltos de portadora, se transmite repetidamente hasta que el receptor responde o bien se excede el tiempo de respuesta. 

      Cuando una unidad emisora y una receptora seleccionan la misma portadora de salto, la receptora recibe el código de acceso y devuelve una confirmación de recibo de la señal, es entonces cuando la unidad emisora envía un paquete de datos que contiene su identidad y frecuencia de reloj actual. Después de que el receptor acepta éste paquete, ajustará su reloj para seleccionar el canal de salto correcto determinado por emisor. De éste modo se establece una piconet en la que la unidad emisora actúa como maestra y la receptora como esclava. Después de haber recibido los paquetes de datos con los códigos de acceso, la unidad maestra debe esperar un procedimiento de requerimiento por parte de las esclavas, diferente al proceso de activación, para poder seleccionar una unidad específica con la que comunicarse.

      El número máximo de unidades que pueden participar activamente en una simple piconet es de 8, un maestro y siete esclavos, por lo que la dirección MCA del paquete de cabecera que se utiliza para distinguir a cada unidad dentro de la piconet, se limita a tres bits.

      Scatternet

      Los equipos que comparten un mismo canal sólo pueden utilizar una parte de su capacidad de este. Aunque los canales tienen un ancho de banda de un 1Mhz, cuantos más usuarios se incorporan a la piconet, disminuye la capacidad hasta unos 10 kbit/s más o menos. Teniendo en cuenta que el ancho de banda medio disponible es de unos 80 Mhz en Europa y USA (excepto en España y Francia), éste no puede ser utilizado eficazmente, cuando cada unidad ocupa una parte del mismo canal de salto de 1Mhz. Para poder solucionar éste problema se adoptó una solución de la que nace el concepto de scatternet.

      Las unidades que se encuentran en el mismo radio de cobertura pueden establecer potencialmente comunicaciones entre ellas. Sin embargo, sólo aquellas unidades que realmente quieran intercambiar información comparten un mismo canal creando la piconet. Éste hecho permite que se creen varias piconets en áreas de cobertura superpuestas. A un grupo de piconets se le llama scatternet. El rendimiento, en conjunto e individualmente de los usuarios de una scatternet es mayor que el que tiene cada usuario cuando participa en un mismo canal de 1 Mhz. Además, estadísticamente se obtienen ganancias por multiplexión y rechazo de canales salto. Debido a que individualmente cada piconet tiene un salto de frecuencia diferente, diferentes piconets pueden usar simultáneamente diferentes canales de salto.

      Hemos de tener en cuenta que cuantas más piconets se añaden a la scatternet el rendimiento del sistema FH disminuye poco a poco, habiendo una reducción por termino medio del 10%. sin embargo el rendimiento que finalmente se obtiene de múltiples piconets supera al de una simple piconet.

      Comunicación inter-piconet

      En un conjunto de varias piconets, éstas seleccionan diferentes saltos de frecuencia y están controladas por diferentes maestros, por lo que si un mismo canal de salto es compartido temporalmente por piconets independientes, los paquetes de datos podrán ser distinguidos por el código de acceso que les precede, que es único en cada piconet. 

      La sincronización de varias piconets no está permitida en la banda ISM. Sin embargo, las unidades pueden participar en diferentes piconets en base a un sistema TDM (división de tiempo múltiplexada). Esto es, una unidad participa secuencialmente en diferentes piconets, a condición de que ésta este sólo activa en una al mismo tiempo. Una unidad al incorporarse a una nueva piconet debe modificar el offset (ajuste interno) de su reloj para minimizar la deriva entre su reloj nativo y el del, por lo que gracias a éste sistema se puede participar en varias piconets realizando cada vez los ajustes correspondientes una vez conocidos los diferentes parámetros de la piconet. Cuando una unidad abandona una piconet, la esclava informa el maestro actual que ésta no estará disponible por un determinado periodo, que será en el que estará activa en otra piconet. Durante su ausencia, el tráfico en la piconet entre el maestro y otros esclavos continua igualmente. 

      De la misma manera que una esclava puede cambiar de una piconet a otra, una maestra también lo puede hacer, con la diferencia de que el tráfico de la piconet se suspende hasta la vuelta de la unidad maestra. La maestra que entra en una nueva piconet, en principio, lo hace como esclava, a no ser que posteriormente ésta solicite actuar como maestra.

      Seguridad

      Para asegurar la protección de la información se ha definido un nivel básico de encriptación, que se ha incluido en el diseño del clip de radio para proveer de seguridad en equipos que carezcan de capacidad de procesamiento, las principales medidas de seguridad son:

  • Una rutina de pregunta-respuesta, para autentificación

  • Una corriente cifrada de datos, para encriptación

  • Generación de una clave de sesión (que puede ser cambiada durante la conexión)

      Tres entidades son utilizadas en los algoritmos de seguridad: la dirección de la unidad Bluetooth, que es una entidad pública; una clave de usuario privada, como una entidad secreta; y un número aleatorio, que es diferente por cada nueva transacción.

      Como se ha descrito anteriormente, la dirección Bluetooth se puede obtener a través de un procedimiento de consulta. La clave privada se deriva durante la inicialización y no es revelada posteriormente. El número aleatorio se genera en un proceso pseudo-aleatorio en cada unidad Bluetooth.

             Por Albert Garcia, basado en un artículo de Jaap Haartsen.
             (Tomado de www.bluetooth.com)

   
 

anterior  

 


   

   
       
 

 

 

 

 

 
 
 
 
 
 

 Autor: Gerardo Ramos Trujillo   [email protected]

[email protected]  

  Copyright © 2005. .GRT 2005.